Publikationen (FIS)

Transport and entanglement growth in long-range random Clifford circuits

verfasst von
Jonas Richter, Oliver Lunt, Arijeet Pal
Abstract

Conservation laws can constrain entanglement dynamics in isolated quantum systems, manifest in a slowdown of higher Rényi entropies. Here, we explore this phenomenon in a class of long-range random Clifford circuits with U(1) symmetry where transport can be tuned from diffusive to superdiffusive. We unveil that the different hydrodynamic regimes reflect themselves in the asymptotic entanglement growth according to S(t)∝ t1/z where the dynamical transport exponent z depends on the probability ∝ r-α of gates spanning a distance r. For sufficiently small α, we show that the presence of hydrodynamic modes becomes irrelevant such that S(t) behaves similarly in circuits with and without conservation law. We explain our findings in terms of the inhibited operator spreading in U(1)-symmetric Clifford circuits where the emerging light cones can be understood in the context of classical Lévy flights. Our Letter sheds light on the connections between Clifford circuits and more generic many-body quantum dynamics.

Organisationseinheit(en)
Institut für Theoretische Physik
Externe Organisation(en)
University College London (UCL)
Stanford University
King's College London
University of Birmingham
Typ
Artikel
Journal
Physical Review Research
Band
5
Anzahl der Seiten
8
ISSN
2643-1564
Publikationsdatum
03.03.2023
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Allgemeine Physik und Astronomie
Elektronische Version(en)
https://doi.org/10.48550/arXiv.2205.06309 (Zugang: Offen)
https://doi.org/10.1103/PhysRevResearch.5.L012031 (Zugang: Offen)