Publikationen (FIS)

Lindblad dynamics from spatio-temporal correlation functions in nonintegrable spin- 1/2 chains with different boundary conditions

verfasst von
Markus Kraft, Jonas Richter, Fengping Jin, Sourav Nandy, Jacek Herbrych, Kristel Michielsen, Hans De Raedt, Jochen Gemmer, Robin Steinigeweg
Abstract

We investigate the Lindblad equation in the context of boundary-driven magnetization transport in spin-1/2 chains. Our central question is whether the nonequilibrium steady state of the open system, including its buildup in time, can be described on the basis of the dynamics in the closed system. To this end, we rely on a previous study [Heitmann, Phys. Rev. B 108, L201119 (2023)2469-995010.1103/PhysRevB.108.L201119], in which a description in terms of spatio-temporal correlation functions was suggested in the case of weak driving and small system-bath coupling. Because this work focused on integrable systems and periodic boundary conditions, we here extend the analysis in three directions: (1) We consider nonintegrable systems, (2) we take into account open boundary conditions and other bath-coupling geometries, and (3) we provide a comparison to time-evolving block decimation. While we find that nonintegrability plays a minor role, the choice of the specific boundary conditions can be crucial due to potentially nondecaying edge modes. Our large-scale numerical simulations suggest that a description based on closed-system correlation functions is a useful alternative to already existing state-of-the-art approaches.

Organisationseinheit(en)
Institut für Theoretische Physik
Externe Organisation(en)
Universität Osnabrück
Stanford University
Forschungszentrum Jülich
Institut "Jožef Stefan" (IJS)
Wroclaw University of Technology
Reichsuniversität Groningen
Typ
Artikel
Journal
Physical Review Research
Band
6
Anzahl der Seiten
12
ISSN
2643-1564
Publikationsdatum
06.06.2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Physik und Astronomie (insg.)
Elektronische Version(en)
https://doi.org/10.48550/arXiv.2402.18177 (Zugang: Offen)
https://doi.org/10.1103/PhysRevResearch.6.023251 (Zugang: Offen)