Publikationen (FIS)

Spin- 1/2 XXZ chain coupled to two Lindblad baths

Constructing nonequilibrium steady states from equilibrium correlation functions

verfasst von
Tjark Heitmann, Jonas Richter, Fengping Jin, Sourav Nandy, Zala Lenarčič, Jacek Herbrych, Kristel Michielsen, Hans De Raedt, Jochen Gemmer, Robin Steinigeweg
Abstract

State-of-the-art approaches to extract transport coefficients of many-body quantum systems broadly fall into two categories: (i) they target the linear-response regime in terms of equilibrium correlation functions of the closed system; or (ii) they consider an open-system situation typically modeled by a Lindblad equation, where a nonequilibrium steady state emerges from driving the system at its boundaries. While quantitative agreement between (i) and (ii) has been found for selected model and parameter choices, also disagreement has been pointed out in the literature. Studying magnetization transport in the spin-1/2 XXZ chain, we here demonstrate that at weak driving, the nonequilibrium steady state in an open system, including its buildup in time, can remarkably be constructed just on the basis of correlation functions in the closed system. We numerically illustrate this direct correspondence of closed-system and open-system dynamics, and show that it allows the treatment of comparatively large open systems, usually only accessible to matrix product state simulations. We also point out potential pitfalls when extracting transport coefficients from nonequilibrium steady states in finite systems.

Organisationseinheit(en)
Institut für Theoretische Physik
Externe Organisation(en)
Universität Osnabrück
Stanford University
Forschungszentrum Jülich
Institut "Jožef Stefan" (IJS)
Wroclaw University of Technology
Reichsuniversität Groningen
Typ
Letter
Journal
Physical Review B
Band
108
Anzahl der Seiten
7
ISSN
2469-9950
Publikationsdatum
27.11.2023
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Elektronische, optische und magnetische Materialien, Physik der kondensierten Materie
Elektronische Version(en)
https://doi.org/10.48550/arXiv.2303.00430 (Zugang: Offen)
https://doi.org/10.1103/PhysRevB.108.L201119 (Zugang: Geschlossen)